Ela Inequalities for the Minimum Eigenvalue of M-matrices∗

نویسندگان

  • GUI-XIAN TIAN
  • TING-ZHU HUANG
چکیده

Let A be a nonsingular M -matrix, and τ(A) denote its minimum eigenvalue. Shivakumar et al. [SIAM J. Matrix Anal. Appl., 17(2):298-312, 1996] presented some bounds of τ(A) when A is a weakly chained diagonally dominant M -matrix. The present paper establishes some new bounds of τ(A) for a general nonsingular M -matrix A. Numerical examples show that the results obtained are an improvement over some known results in certain cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela a New Eigenvalue Bound for the Hadamard Product of an M-matrix and an Inverse M-matrix

If A and B are n× n nonsingular M -matrices, a new lower bound for the minimum eigenvalue τ(A◦B) for the Hadamard product of A and B is derived. This bound improves the result of [R. Huang. Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl., 428:1551–1559, 2008.].

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

Some New Inequalities for Eigenvalues of the Hadamard Product and the Fan Product of Matrices

Let A and B be nonnegative matrices. A new upper bound on the spectral radius ρ(A◦B) is obtained. Meanwhile, a new lower bound on the smallest eigenvalue q(A B) for the Fan product, and a new lower bound on the minimum eigenvalue q(B ◦A−1) for the Hadamard product of B and A−1 of two nonsingular M -matrices A and B are given. Some results of comparison are also given in theory. To illustrate ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010